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Bounded Differences Inequality

P(f (X)−E [f (X)]≥ t)≤ ?

Definition (c-Lipschitz, Bounded Differences Condition)
Given a vector c= (c1, . . . ,cn) ∈Rn+, a function f is c-Lipschitz if∣∣f (x1, . . . ,xi, . . . ,xn)− f (x1, . . . ,x′i, . . . ,xn)

∣∣≤ ci

Theorem (Bounded Differences Inequality [McDiarmid, 1989])
1 f is c-Lipschitz
2 X= (X1, . . . ,Xn) are independent random variables

P(f (X)−E [f (X)]≥ t)≤ exp

(
− 2t2

‖c‖2
2

)

also called Azuma-Hoeffding inequality.



Dependent Random Variables

Mixing coefficients: α/β/ϕ/Φ/η-mixing, etc.
Ï quantitively measure the dependence among random variables.
Ï widely used in probability theory, statistical theory.

Dependency graphs: Lovász Local Lemma, Normal/Poisson approximation,
Janson’s/Suen’s Inequality, etc.

Ï combinatorial, independent set, max degree, cumulant, spanning tree, etc.

Copula, graphical models (random field, Bayesian network, etc.), statistical physics,
time series, etc.



Dependency Graphs

Definition (Dependency Graphs)
G is called a dependency graph for random variables X= {X1, . . . ,Xn} if

Vertices V (G)= [n]= {1, . . . ,n} represent random variables X1, . . . ,Xn
If disjoint I ,J ⊂ [n] are non-adjacent in G, {Xi }i∈I and {Xj }j∈J are independent.

Example

X6

X4
X5

X1

X2

X3

{
X1,X2

}
and

{
X4,X6

}
are independent.

Ï The dependency graph for a set of random variables is not necessarily unique.
Ï There are weaker versions of dependency graphs, e.g. the one used in LLL.



Janson’s Hoeffding-type inequality

Theorem ([Hoeffding, 1963])
X: independent random variables

P
(

n∑
i=1

Xi −E
[

n∑
i=1

Xi

]
≥ t

)
≤ exp

(
− 2t2

‖c‖2
2

)

Theorem ([Janson, 2004])
X: graph-dependent random variables

P

 ∑
i∈V (G)

Xi −E

 ∑
i∈V (G)

Xi

≥ t

≤ exp

(
− 2t2

χ∗(G)‖c‖2
2

)

Ï χ∗(G): fractional chromatic number of dependency graph G for random variables X.
Ï idea: decomposition of summation to summations over independent set.
Ï Janson has another well-known inequality for dependency graphs.



Tree-Dependent Random Variables

Theorem ([Zhang et al., 2019])
1 f is c-Lipschitz
2 T is a dependency graph for X; T is a tree

P(f (X)−E [f (X)]≥ t)≤ exp

− 2t2

c2
min

+∑
{i ,j}∈E(T )(ci +cj )2


where cmin is the minimum entry of c.



Forest-Dependent Random Variables

Theorem ([Zhang et al., 2019])
1 f is c-Lipschitz
2 F is a dependency graph for X; F = {Ti }i∈[k] is a forest

P(f (X)−E [f (X)]≥ t)≤ exp

− 2t2∑k
i=1 c2

min,i +
∑

{i ,j}∈E(F)(ci +cj )2


where cmin,i =min

{
cj : j ∈V (Ti )

}
Ï strict generalisation of the McDiarmid’s inequality for independent random variables
Ï By transforming graph to forest via merging vertices, using the notion of Forest

Complexity Λ(G), we can handle general graph G

exp

(
− 2t2

Λ(G)c2
max

)



Examples

G

ϕ−−−−−→

F

Figure: C6: Λ(G)≤ 8n−13=O(n)

G

ϕ−−−−−→

F

Figure: C5: Λ(G)≤ 8n−14=O(n)



Examples

G

ϕ

F

Figure: 4×4-grid Λ(G)=O(n
3
2 )



m-dependence

Corollary (m-dependence [Zhang et al., 2019])

Random variables {Xi }ni=1 is called m-dependent if for any i ∈ [n−m−1], {Xj }ij=1 is
independent of {Xj }nj=i+m+1.

Λ(G)≤
(⌈ n

m

⌉
−1

)
(m+m)2 +m2 ≤ 4mn =O(mn)

P(f (X)−E [f (X)]≥ t)≤ exp

(
− 2t2

4mnc2
max

)

G

ϕ

F

Figure: 2-dependent sequence



Applications in Machine Learning

Example
yi : the observation at location i , e.g., the house price
xi : the random variable modelling influential factors at location i

. . . x1 x2 x3 x4 x5 x6 . . .

. . . y2 y3 y4 y5 . . .

Given training data: S= {
. . . ,(x2,y2),(x3,y3),(x4,y4),(x5,y5), . . .

}
Find predictive function f : xi 7→ yi
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Applications in Machine Learning

Example
yi : the observation at location i , e.g., the house price
xi : the random variable modelling influential factors at location i

. . . x1 x2 x3 x4 x5 x6 . . .

. . . y3 y4 . . .

Given training data: S= {
. . . ,((x1,x2,x3,x4,x5),y3),((x2,x3,x4,x5,x6),y4), . . .

}
Find predictive function f : (xi−2,xi−1,xi ,xi+1,xi+2) 7→ yi



Background on Machine Learning

Given input x , choose f : x 7→ y that perform well on unknown new data.
A training data set S contains n samples (xi ,yi )∼D (unknown)
Loss function measures error between true y and predicted f (x)

(y , f (x)) 7→ ℓ(y , f (x))

upper bounded by M ∈R+
Expected error: expected loss on new test data (x ,y)∼D (unknown)

R(f )=E [ℓ(y , f (x))]

Empirical error: average loss on given training data (xi ,yi )
n
i=1 (computable)

R̂(f )= 1
n

n∑
i=1

ℓ(yi , f (xi ))

Goal is to establish generalisation error bounds

R(f )≤ R̂(f )+?



Stability Bound for Learning Graph-Dependent Data

A learning algorithm A :S 7→ f A
S outputs f A

S given samples S

Definition (Uniform Stability [Bousquet and Elisseeff, 2002])
The learning algorithm A is βn-uniformly stable if

max
i∈[n]

∣∣∣ℓ(y , f A
S (x))−ℓ(y , f A

S\i (x))
∣∣∣≤βn

Lemma

R(f A
S )− R̂(f A

S ) is (4βn +M/n)-Lipschitz

E
[
R(f A

S )− R̂(f A
S )

]
≤ 2βn,∆(∆+1), ∆: max degree

Theorem ([Zhang et al., 2019])
Let βn,∆ =maxi∈[0,∆]βn−i . For δ ∈ (0,1), with probability at least 1−δ,

R(f A
S )≤ R̂(f A

S )+2βn,∆(∆+1)+ (4βn +M/n)

√
Λ(G) ln(1/δ)

2



Stability Bound for Learning m-dependent Data

Example
yi : the observation at location i , e.g., the house price
xi : the random variable modelling geographical effect at location i

. . . x1 x2 x3 x4 x5 x6 . . .

. . . y3 y4 . . .

Given training data: S= {
. . . ,((x1,x2,x3,x4,x5),y3),((x2,x3,x4,x5,x6),y4), . . .

}
Find predictive function f : (xi−2,xi−1,xi ,xi+1,xi+2) 7→ yi

Corollary ([Zhang et al., 2019])

R(f A
S )≤ R̂(f A

S )+2βn,2m(2m+1)+ (4nβn +M)

√
2m ln(1/δ)

n



Future Work

Improve the results to match the summation bound by Janson.
Results using other dependency graph models

Weighted dependency graphs [Féray et al., 2018]
Threshold dependency graphs [Lampert et al., 2018]

Results for weaker versions of dependency graphs
Weak dependency graph: Xi is independent of X[n]\N+(i)
Pairwise independence: Xi is independent of Xu : u ∉N+(i)

Results for dependency hypergraphs
Dependent random variables are generated by independent ones by sharing variables
(similar to the variable version Lovász Local Lemma)



McDiarmid-type Inequalities for Graph-dependent Variables and Stability Bounds
Spotlight in Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
Thanks for your time and attention!
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