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Bounded Differences Inequality

P(f(X)-E[f(X)]=t)<?

Definition (c-Lipschitz, Bounded Differences Condition)

Given a vector c=(cy,...,cn) €RY, a function f is c-Lipschitz if

|f(x1,...,xi,...,xn)—f(xl,...,xé,...,xn)| =g

Theorem (Bounded Differences Inequality [McDiarmid, 1989])
H f is c-Lipschitz
X =(Xy,...,Xn) are independent random variables

2
P(F(X)—E[f(X)] > t) < exp(—”i#)
2

also called Azuma-Hoeffding inequality.
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Dependent Random Variables

m Mixing coefficients: a/B/¢p/®/n-mixing, etc.
> quantitively measure the dependence among random variables.
> widely used in probability theory, statistical theory.
m Dependency graphs: Lovasz Local Lemma, Normal/Poisson approximation,
Janson’s/Suen’s Inequality, etc.
> combinatorial, independent set, max degree, cumulant, spanning tree, etc.
m Copula, graphical models (random field, Bayesian network, etc.), statistical physics,
time series, etc.
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Dependency Graphs

Definition (Dependency Graphs)
G is called a dependency graph for random variables X = {Xq,...,Xn} if
m Vertices V(G) =[n]=1{1,...,n} represent random variables X,...,Xp

m /f disjoint I,J < [n] are non-adjacent in G, {Xj}jc; and {Xj};c; are independent.

Example

{X1,X2} and {X4, X} are independent.

> The dependency graph for a set of random variables is not necessarily unique. .

» There are weaker versions of dependency graphs, e.g. the one used in LLL.
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Janson’s Hoeffding-type inequality

Theorem ([Hoeffding, 1963])

X: independent random variables

P(i_ilx,-—E[ilx,-

i=

- t) <exp (_ 2t2 )
) llen3

Theorem ([Janson, 2004])

X: graph-dependent random variables

> X

i€eV(G)

P( Y Xi-E

ieV(G)

2] <o p( 2¢2 )
= = €X e
x*(G)lell3

> 1*(G): fractional chromatic number of dependency graph G for random variables X.

> idea: decomposition of summation to summations over independent set.

» Janson has another well-known inequality for dependency graphs.
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Tree-Dependent Random Variables

Theorem ([Zhang et al., 2019])
f is c-Lipschitz
T is a dependency graph for X; T is a tree

2t2
2

P(f(X)-E[f(X)]=t)<exp|- T ( )(c-+c-)2
min (i jleE(T)\=I 5

where Cpin is the minimum entry of c.
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Forest-Dependent Random Variables

Theorem ([Zhang et al., 2019])
f is c-Lipschitz
F is a dependency graph for X; F ={T;} ie[K] is a forest

22
P(F(X)—E[f(X)] > t) <exp| -
( ,-k:lCrQnin,;+Zu,j}eE(F)(Ci+Cj)2)

where cpin i =min{c;j:je V(T;)}

> strict generalisation of the McDiarmid's inequality for independent random variables

» By transforming graph to forest via merging vertices, using the notion of Forest
Complexity A(G), we can handle general graph G

exp

_L)
A(G)cr2nax

MONASH University



Examples

Q ¢
G

Figure: Cg: A(G)<8n—-13=0(n)

G

Figure: Cs5: A(G)<8n-14=0(n)
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Examples

I
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3
Figure: 4 x 4-grid A(G)=0(n2)

MONASH University



m-dependence

Corollary (m-dependence [Zhang et al., 2019])
Random variables {X;}!_, is called m-dependent if for any i€ [n—m-1], {

independent of {X; }J Arons]c

A(G) = ([%-‘ —1)(m+ m)? +m? <4mn= O(mn)

2
P(f(X) - E[f(x)] = t) <exp (—2—t2)

4mnc, .
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Figure: 2-dependent sequence
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Applications in Machine Learning

Example
m y;: the observation at location i, e.g., the house price

m x;: the random variable modelling influential factors at location i

FYYYy

m Given training data: S=1{...,(x2,¥2),(x3,¥3),(x4,¥4), (x5,¥5),-. .}
m Find predictive function 7 : x; — y;
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Applications in Machine Learning

Example
m y;: the observation at location i, e.g., the house price

x;: the random variable modelling influential factors at location 7
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Applications in Machine Learning

Example
m y;: the observation at location /, e.g., the house price

m x;: the random variable modelling influential factors at location i

m Given training data: S={...,((x1,x2,x3,x4,x5),¥3),((X2,X3,Xa,x5,%6 ), Ya),---}
m Find predictive function f:(xj_2,Xj_1, X}, Xj+1,Xi+2) — Yi
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Background on Machine Learning

Given input x, choose f : x — y that perform well on unknown new data.
A training data set S contains n samples (x;,y;) ~ D (unknown)

Loss function measures error between true y and predicted f(x)

(v, f(x)) = e(y, f(x))

upper bounded by M e R4
Expected error: expected loss on new test data (x,y) ~ D (unknown)
R(f)=E[¢(y,f(x))]
Empirical error: average loss on given training data (X,-,y,-)?zl (computable)
~ 17
R(F)= 7 L C0nf ()

Goal is to establish generalisation error bounds

R(f)<R(f)+?
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Stability Bound for Learning Graph-Dependent Data

A learning algorithm «f : S — fsd outputs fs”d given samples S

Definition (Uniform Stability [Bousquet and Elisseeff, 2002])
The learning algorithm <f is Bp-uniformly stable if

max|¢(y, 57 (x)) = €(, £55(x))| <

i€[n]

Lemma
- R(fsd) —R(f#) is (4B, + M/ n)-Lipschitz

S
m E [R(fsd)— AR(fs“’)] <2Bpa(A+1), A: max degree

Theorem ([Zhang et al., 2019])
Let Bpa= maX;e[o,a] Bn—i- For 6 € (0,1), with probability at least 1-6,

A(G)In(1/5)

R(S) < R(£S ) +2Bna(A+1)+ (4B + M/n) >

v
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Stability Bound for Learning m-dependent Data

Example
m y;: the observation at location i, e.g., the house price

X;: the random variable modelling geographical effect at location i

0.6 0606 -

m Given training data: S={...,((x1,x2,x3,xa,x5),¥3), (X2, X3, Xa,x5,X6 ), Ya),---}
m Find predictive function f: (X,'_2,X,'_1,X,',X,'+1,X,'+2) — Y

Corollary ([Zhang et al., 2019])

R(f&) < R(f&) +2Bpom(2m+1) + (4nfn + M) %ﬁlﬁs)
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Future Work

Improve the results to match the summation bound by Janson.
Results using other dependency graph models

m Weighted dependency graphs [Féray et al., 2018]
m Threshold dependency graphs [Lampert et al., 2018]

Results for weaker versions of dependency graphs
m Weak dependency graph: X; is independent of X[n]\N*(i)
m Pairwise independence: X; is independent of X, : u¢ N* (i)
Results for dependency hypergraphs

m Dependent random variables are generated by independent ones by sharing variables
(similar to the variable version Lovasz Local Lemma)
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m McDiarmid-type Inequalities for Graph-dependent Variables and Stability Bounds
Spotlight in Advances in Neural Information Processing Systems 32 (NeurlPS 2019)

m Thanks for your time and attention!
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