Bounded Differences Inequalities for Graph-dependent Random Variables and Stability Bounds

Rui-Ray Zhang
rui.zhang@monash.edu
School of Mathematics, Monash University

Joint work with Xingwu Liu, Yuyi Wang, Liwei Wang

Bounded Differences Inequality

$$
\mathbf{P}(f(\mathbf{X})-\mathbf{E}[f(\mathbf{X})] \geq t) \leq ?
$$

Definition (c-Lipschitz, Bounded Differences Condition)

Given a vector $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}_{+}^{n}$, a function f is \mathbf{c}-Lipschitz if

$$
\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

Theorem (Bounded Differences Inequality [McDiarmid, 1989])
$1 f$ is c-Lipschitz
2 $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ are independent random variables

$$
\mathbf{P}(f(\mathbf{X})-\mathbf{E}[f(\mathbf{X})] \geq t) \leq \exp \left(-\frac{2 t^{2}}{\|\mathbf{c}\|_{2}^{2}}\right)
$$

also called Azuma-Hoeffding inequality.

Dependent Random Variables

■ Mixing coefficients: $\alpha / \beta / \phi / \Phi / \eta$-mixing, etc.

- quantitively measure the dependence among random variables.
- widely used in probability theory, statistical theory.

■ Dependency graphs: Lovász Local Lemma, Normal/Poisson approximation, Janson's/Suen's Inequality, etc.

- combinatorial, independent set, max degree, cumulant, spanning tree, etc.

■ Copula, graphical models (random field, Bayesian network, etc.), statistical physics, time series, etc.

Dependency Graphs

Definition (Dependency Graphs)

G is called a dependency graph for random variables $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ if

- Vertices $V(G)=[n]=\{1, \ldots, n\}$ represent random variables X_{1}, \ldots, X_{n}
- If disjoint $I, J \subset[n]$ are non-adjacent in $G,\left\{X_{i}\right\}_{i \in I}$ and $\left\{X_{j}\right\}_{j \in J}$ are independent.

Example

$\left\{X_{1}, X_{2}\right\}$ and $\left\{X_{4}, X_{6}\right\}$ are independent.

- The dependency graph for a set of random variables is not necessarily unique.
- There are weaker versions of dependency graphs, e.g. the one used in LLL.

Janson's Hoeffding-type inequality

Theorem ([Hoeffding, 1963])

X: independent random variables

$$
\mathbf{P}\left(\sum_{i=1}^{n} X_{i}-\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right] \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\|\mathbf{c}\|_{2}^{2}}\right)
$$

Theorem ([Janson, 2004])

X: graph-dependent random variables

$$
\mathbf{P}\left(\sum_{i \in V(G)} X_{i}-\mathbf{E}\left[\sum_{i \in V(G)} X_{i}\right] \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\chi^{*}(G)\|\mathbf{c}\|_{2}^{2}}\right)
$$

- $\chi^{*}(G)$: fractional chromatic number of dependency graph G for random variables \mathbf{X}.
- idea: decomposition of summation to summations over independent set.
- Janson has another well-known inequality for dependency graphs.

Tree-Dependent Random Variables

Theorem ([Zhang et al., 2019])

$1 f$ is c-Lipschitz
\boxed{T} is a dependency graph for \mathbf{X}; T is a tree

$$
\mathbf{P}(f(\mathbf{X})-\mathbf{E}[f(\mathbf{X})] \geq t) \leq \exp \left(-\frac{2 t^{2}}{c_{\min }^{2}+\sum_{\{i, j\} \in E(T)}\left(c_{i}+c_{j}\right)^{2}}\right)
$$

where $c_{\min }$ is the minimum entry of \mathbf{c}.

Forest-Dependent Random Variables

Theorem ([Zhang et al., 2019])

$1 f$ is c-Lipschitz
2. F is a dependency graph for $\mathbf{X} ; F=\left\{T_{i}\right\}_{i \in[k]}$ is a forest

$$
\mathbf{P}(f(\mathbf{X})-\mathbf{E}[f(\mathbf{X})] \geq t) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{k} c_{\min , i}^{2}+\sum_{\{i, j\} \in E(F)}\left(c_{i}+c_{j}\right)^{2}}\right)
$$

where $c_{\min , i}=\min \left\{c_{j}: j \in V\left(T_{i}\right)\right\}$

- strict generalisation of the McDiarmid's inequality for independent random variables
- By transforming graph to forest via merging vertices, using the notion of Forest Complexity $\Lambda(G)$, we can handle general graph G

$$
\exp \left(-\frac{2 t^{2}}{\Lambda(G) \mathbf{c}_{\max }^{2}}\right)
$$

Examples

Figure: $C_{6}: \Lambda(G) \leq 8 n-13=O(n)$

Figure: $C_{5}: \Lambda(G) \leq 8 n-14=O(n)$

Examples

Figure: 4×4-grid $\Lambda(G)=O\left(n^{\frac{3}{2}}\right)$

m-dependence

Corollary (m-dependence [Zhang et al., 2019])

Random variables $\left\{X_{i}\right\}_{i=1}^{n}$ is called m-dependent if for any $i \in[n-m-1],\left\{X_{j}\right\}_{j=1}^{i}$ is independent of $\left\{X_{j}\right\}_{j=i+m+1}^{n}$.

$$
\begin{gathered}
\Lambda(G) \leq\left(\left[\frac{n}{m}\right]-1\right)(m+m)^{2}+m^{2} \leq 4 m n=O(m n) \\
\quad \mathbf{P}(f(\mathbf{X})-\mathbf{E}[f(\mathbf{X})] \geq t) \leq \exp \left(-\frac{2 t^{2}}{4 m n \mathbf{c}_{\max }^{2}}\right)
\end{gathered}
$$

Figure: 2-dependent sequence

Applications in Machine Learning

Example

- y_{i} : the observation at location i, e.g., the house price
- x_{i} : the random variable modelling influential factors at location i

■ Given training data: $\mathbf{S}=\left\{\ldots,\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right),\left(x_{5}, y_{5}\right), \ldots\right\}$
■ Find predictive function $f: x_{i} \mapsto y_{i}$

Applications in Machine Learning

Example

■ y_{i} : the observation at location i, e.g., the house price
■ x_{i} : the random variable modelling influential factors at location i

Applications in Machine Learning

Example

- y_{i} : the observation at location i, e.g., the house price
- x_{i} : the random variable modelling influential factors at location i

- Given training data: $\mathbf{S}=\left\{\ldots,\left(\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right), y_{3}\right),\left(\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right), y_{4}\right), \ldots\right\}$
$■$ Find predictive function $f:\left(x_{i-2}, x_{i-1}, x_{i}, x_{i+1}, x_{i+2}\right) \mapsto y_{i}$

Background on Machine Learning

■ Given input x, choose $f: x \mapsto y$ that perform well on unknown new data.

- A training data set \mathbf{S} contains n samples $\left(x_{i}, y_{i}\right) \sim D$ (unknown)
- Loss function measures error between true y and predicted $f(x)$

$$
(y, f(x)) \mapsto \ell(y, f(x))
$$

upper bounded by $M \in \mathbb{R}_{+}$
■ Expected error: expected loss on new test data $(x, y) \sim D$ (unknown)

$$
R(f)=\mathbf{E}[\ell(y, f(x))]
$$

■ Empirical error: average loss on given training data $\left(x_{i}, y_{i}\right)_{i=1}^{n}$ (computable)

$$
\widehat{R}(f)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)
$$

- Goal is to establish generalisation error bounds

$$
R(f) \leq \widehat{R}(f)+?
$$

Stability Bound for Learning Graph-Dependent Data

A learning algorithm $\mathscr{A}: \mathbf{S} \mapsto f_{\mathbf{S}}^{\mathscr{A}}$ outputs $f_{\mathbf{S}}^{\mathscr{A}}$ given samples \mathbf{S}
Definition (Uniform Stability [Bousquet and Elisseeff, 2002])
The learning algorithm \mathscr{A} is β_{n}-uniformly stable if

$$
\max _{i \in[n]}\left|\ell\left(y, f_{\mathbf{S}}^{\mathscr{A}}(x)\right)-\ell\left(y, f_{\mathbf{S}^{\prime i}}^{\mathscr{A}}(x)\right)\right| \leq \beta_{n}
$$

Lemma

- $R\left(f_{\mathbf{S}}^{\mathscr{A}}\right)-\widehat{R}\left(f_{\mathbf{S}}^{\mathscr{A}}\right)$ is $\left(4 \beta_{n}+M / n\right)$-Lipschitz
- $\mathbf{E}\left[R\left(f_{\mathbf{S}}^{\mathscr{A}}\right)-\widehat{R}\left(f_{\mathbf{S}}^{\mathscr{A}}\right)\right] \leq 2 \beta_{n, \Delta}(\Delta+1), \Delta$: max degree

Theorem ([Zhang et al., 2019])

Let $\beta_{n, \Delta}=\max _{i \in[0, \Delta]} \beta_{n-i}$. For $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
R\left(f_{\mathbf{S}}^{\mathscr{A}}\right) \leq \widehat{R}\left(f_{\mathbf{S}}^{\mathscr{A}}\right)+2 \beta_{n, \Delta}(\Delta+1)+\left(4 \beta_{n}+M / n\right) \sqrt{\frac{\Lambda(G) \ln (1 / \delta)}{2}}
$$

Stability Bound for Learning m-dependent Data

Example

■ y_{i} : the observation at location i, e.g., the house price

- x_{i} : the random variable modelling geographical effect at location i

■ Given training data: $\mathbf{S}=\left\{\ldots,\left(\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right), y_{3}\right),\left(\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right), y_{4}\right), \ldots\right\}$
■ Find predictive function $f:\left(x_{i-2}, x_{i-1}, x_{i}, x_{i+1}, x_{i+2}\right) \mapsto y_{i}$

Corollary ([Zhang et al., 2019])

$$
R\left(f_{\mathrm{S}}^{\mathscr{A}}\right) \leq \widehat{R}\left(f_{\mathrm{S}}^{\mathscr{A}}\right)+2 \beta_{n, 2 m}(2 m+1)+\left(4 n \beta_{n}+M\right) \sqrt{\frac{2 m \ln (1 / \delta)}{n}}
$$

Future Work

- Improve the results to match the summation bound by Janson.
- Results using other dependency graph models

■ Weighted dependency graphs [Féray et al., 2018]

- Threshold dependency graphs [Lampert et al., 2018]

■ Results for weaker versions of dependency graphs

- Weak dependency graph: \mathbf{X}_{i} is independent of $\mathbf{X}_{[n] \backslash N^{+}(i)}$

■ Pairwise independence: \mathbf{X}_{i} is independent of $\mathbf{X}_{u}: u \notin N^{+}(i)$

- Results for dependency hypergraphs
- Dependent random variables are generated by independent ones by sharing variables (similar to the variable version Lovász Local Lemma)
- McDiarmid-type Inequalities for Graph-dependent Variables and Stability Bounds Spotlight in Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
- Thanks for your time and attention!

References I

Bousquet, O. and Elisseeff, A. (2002).
Stability and generalization.
Journal of machine learning research, 2(Mar):499-526.
Féray, V. et al. (2018).
Weighted dependency graphs.
Electronic Journal of Probability, 23.
Hoeffding, W. (1963).
Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13-30.
Janson, S. (2004).
Large deviations for sums of partly dependent random variables.
Random Structures \& Algorithms, 24(3):234-248.
Lampert, C. H., Ralaivola, L., and Zimin, A. (2018).
Dependency-dependent bounds for sums of dependent random variables.
arXiv preprint arXiv:1811.01404.
McDiarmid, C. (1989).
On the method of bounded differences.
Surveys in combinatorics, 141(1):148-188.
Zhang, R.-R., Liu, X., Wang, Y., and Wang, L. (2019).
Mcdiarmid-type inequalities for graph-dependent variables and stability bounds.
In Advances in Neural Information Processing Systems 32, pages 10889-10899.

